Quantum Mechanics

1 Mathematical Foundations

In Quantum mechanics, we work with complex

The eigenvectors of a Hermitian matrix form
an orthogonal basis.

A matrix is called unitary if UTU = I. This
means that the inverse of U is UT.
The quantity LM — ML is called the commu-

vector spaces (more percisely Hilbert spaces) where tator of L and M and is denoted by [L, M]. By

the elements |A) are called kets. We additionally
require linearity for this space.

Each of our kets has a dual called bra (A|. It
serves as a column vector of the ket vector and
is complex conjugated. An important thing to
remember is that the dual to z|A) is (A|Z.

The scalar product is called inner product and
is written as (B|K). The result is a complex
number. Also: (B|A) = (A|B). Let us intro-

duce some terms.
e Normalized Vector: (A|A) = 1.
e Orthagonal Vectors: (A|B) = 0.

When using an orthonormal basis, the ket |A) can
be represented as |A) = >, a;|i), where |i) are the
base kets. To calculate a; we do the following:

Zaz]|

This works because (j | i) acts as Kroenecker Delta

We will also define the outer product of two
kets |A) and |B) as |A)(B]|. It is a matrix with
the elements A;B;. If we have the special case of
|A) = |B), we get the projection operator |A)(A|.
Applying it to a ket |C) gives us the projection
of |C) onto |A). (i.e. |A)(A]|C)) Adding all the
projection operators of an orthonormal basis gives
us the identity operator I.

We define the Expectation Value (L) as the
weighted sum ), A\, P(\;). Further we define the
statistical correlation of two probability distribu-
tions P(\;) and P(u;) as (AB) — (A)(B). It is
non-zero if the two observables are correlated and
zero if they are not. Omne can also say that if
P(a,b) = P(a)P(b), then the observables are un-
correlated.

= (j|A) =

2 Matrices

For a Matrix M we define the Hermitian Conju-
gation M1 as the complex conjugate of the trans-
pose of M (i.e. M' = MT). A matrix is called
Hermitian if M = M.

If we have M|A) =
(Bl

|B), we have (A|MT =

definition, [L, M] =
and M commute.
We define the trace of a matrix M as the sum
of its diagonal elements. If we have a hermitian
matrix H it’s trace is further equal to the sum
of its eigenvalues. Using the trace, the expecta-
tion value of an observable L can be written as
(LY = Tr(Lp), where p is the density matrix of
the system, where the density matrix is defined

as p =3, P(A)[Ai) (Ail.

—[M,L] and [L,M] =0 if L

3 Tensor Products

Taking the Tensor product ® can be used in quan-
tum mechanics to combine two systems. For de-
tails see section 10. Let’s look at Tensor product
for two two 2x2 matrices A and B. In standard

. auB (llgB
notation, we have A ® B =
(lng a22B
a11011  a11bia  aebin ajebi
. a11b91  ai1bag  ajobar  ajaba
A® B =
a21011  as1bia  agebin  asbis
a21091  as1bay  agebar  agebas

This special form of the tensor product for Matri-
ces is called the Kronecker Product. In general if
you have a mxn and a pxq matrix, the resulting
matrix will be mpxng. For vectors, just set n or
q to 1.

4 Quantum States

Let’s look at spin. We can conclude we have 2
dimesions. Now let’s arbitrairly make up |u) and
down |d) our base kets. Every state |A) is of the
form |A) = au|u) + ag|d). Here a, - @, is the
probability to find the up state and likewise for
Qg - Oz_d

For left-right spin we just have a diffrent base
looking like:

1 1 1
r) = \/Elw \/—|d> and [l) = \/5|U> \/§|d>
And for in-out spin:
, 1 1 1 1
i) = EW + E|d> and |o) = EM - %ICQ



We could also write spin states as column vectors

with [u) — (é) and |d) = @

5 Observables

A observable is a thing you can measure. For
example o, the z component of the spin. Ob-
servables are represented by hermitian matrices.
The eigenvalues of these matrices form the pos-
sible outcomes of a measurement where the cor-
responding eigenvectors are the state the system
collapses to after the measurement. If |A) is the
state vector and M the observable, the probabil-
ity to measure the eigenvalue \; is (A |d)(i | A).
For our spin example, one can show that for
the z component of the spin, we have the matrix
1 0
0 -1
the eigenvalues are 1 and -1 with the eigenvectors
|u) and |d) respectively. We can further find the
matrices in x and y direction. Together, they form
the Pauli Matrices.

representation o, = As we can see

Pauli Matrices

/1 0 (01 (0 —i
9==\0 —1)'%=\1 0)% = \i 0

One can also use these matrices to measure spin
along any direction. If we measure spin along the
direction 7 = (ng,n,,n,), we can use the matrix
representation o, = n,o, + NyOy + N,0,.

Using the Pauli matrices, its also possible to
write down all 2x2 Hermitian matrices. They are
of the form A = ayI + a,0, + a0, + a,0,, where
I is the identity matrix.

Lastly, notice that there is a direction, that
if we measure our spin in, we already know the
outcome.

6 Time and Change

When we have two identical systems, and we have
them at the same state at some point in time,
both their past and future states are the same.
Distinctions are conserved. This is called unitary
evolution.

Consider a closed system at time ¢, namely
|W(t)). We can define some operator U(t) such
that |W(t)) = U(¢)|¥(0)). This operator is called
the time development operator. We can use it
to calculate the state of the system at any time
t and find the probabilities of outcomes in later
experiments.

Our operator needs to satisfy some properties,
firstly: Conservation of destinction. If we have
two states |U) and |®), and (¥(0)|P(0)) = 0,
then (U(t)|®(t)) = 0. We also require that the
operator is linear. From this we can see, that U (t)
is unitary.

7 Schrodingers Equation

The time dependent Schrodinger equation is given
by

Time Dependent Schrodinger Equation

LOL()

ot = —iH|(L).

This equation describes how the state of a system
evolves over time. The Hamiltonian H is the ob-
servable that corresponds to the total energy of
the system.

So now, how do we calculate the expectation
value of an observable A at time t? We could use
the formula from the beginning, however for an
observable L we can also use the formula (L) =
(W) L|W(t)).

We can now derive, how the expectation value
of an observable changes over time. We find that

d i

S YOILIR)) = - (VO|HL - LH][(2))

or in simple terms

d i z
(L) = 2 ([H, L]). = —{[L, H))

We can now talk about conserved quantities. If
[H, L] =0, then (L) is conserved. We can follow
that even [H, L"] = 0 for all n. If we now let L
be the Hamiltonian, we find that the energy is
conserved. :)

From the time dependent Schrédinger equa-
tion we can derive the time independent Schrodinger
equation. If we let the observable values of energy
be E; with the corresponding eigenvectors |E}),
we have

Time Independent Schrodinger Equa-
tion

H|E;) = Ej|Ej).

This equation can be used to find the eigenvalues
and corresponding eigenvectors of the Hamilto-
nian. Using the information of the time indepen-
dent Schrodinger equation, we can also solve the
time dependent Schrodinger equation. We can



also describe a state |U(t)) as a linear combina-
tion of the eigenvectors of the Hamiltonian. It
can be shown, that every coefficient «; is of the
form
a; = a;(0)e Fit/h,

This equation holds, as long as the Hamiltonian
is time independent. From here we can now easily
derive the probabilities at some time t.

As a last comment. The wave function |W(¢))
collapses when it is measured. That means, that
all the randomness about the given observable is
gone. This is called the collapse of the wave func-
tion.

8 Wave function

Suppose the basis vectors of some quantum sys-
tem to be |a, b, ...) with the corresponding eigen-
values a,b,.... Consider an arbitrary state |U).
We can writeit as [¥) = >, ¥(a,b,...)|a,b,...).
The quantities ©(a,b,...) are just some coeffi-
cients. Where each of them can be found by
Y(a,b,...) (a,b,...|W). This set of coeffi-
cients 1 (a,b,...) is called the wave function of
the system in the basis denoted by the observ-
ables A, B, .. ..

Again probabilities for some state |x) is give
by ¥(z)(z) and the sum over all probabilities is
equal to 1.

9 Uncertainty

Consider two observables L and M. This can for
example be two Qubits of which we each measure
the spin in z direction. If we let \; and pu; be the
eigenvalues of L and M respectively, we can find
that in order to measure both observables at the
same time, we need to have that the observables
commute and vice versa. If the observables do not
commute, we in general cannot have unambiguous
values for both observables at the same time. We
can now proof that we cannot have knowledge
about spin in more than one direction at the same
time.

Let’s try and quantify uncertainty. Lets take
an observable A with eigenvalues a. For some
state | W), there is a probability distribution fun-
tion with (4) = >, a;P(a;). The variance of A is
given by

(AA)* = (A - (4))?).

If the expectation value of an observable A is
0, then the variance of A is given by

(A4 = (47,

Now, let |¥) be an arbitrary state and let A
and B be two observables. Now, define |X) =
A|W) and |Y) = ¢B|V¥). Plugging this into the
Cauchy-Schwarz inequality, we find that

2:/(A%)(B?) = [{[4, B])|.

With some theorems about commutators, we can
now derive the Uncertainty Principle.

For two observables A and B, acting on a
state |U) we have

(AA)(AB) = S[([A, B])|.

N | —

10 Entanglement

Consider two systems A and B. Further let the
space of states be S4 and Sg. Our goal is now to
a single composite system AB. It can be shown
that this is done by taking the tensor product
of the two spaces Sy ® Sg. This will result in
new basis kets |ab). Where the number of them
is the product of the number of basis kets of A
and B. A combined state could be written as
la;) @ |b;). Typically the simpler version |a;b;)
is used. However it is important that despite it
being tempting to use this as a double index, it is
not. |a;b;) is a single state of a combined system!
Therefore, (a;b; | agb;) = 6;x0;. And thus we can
write for a state | ) of the combined system |¥) =
> i Ui, g)]aiby).

Let us return to two single spins. Let’s call
the spin of system A ¢ and the spin of system B
7, where o has components o,,0,,0, and 7 has
components 7., 7,, .. If we just consider spin in
z direction for both systems, we can write the
combined state as

V) = aluu) + Blud) + v|du) + d|dd).

Let us first look at the special case of Product
States. Here we require our initial spins to be
independent of each other. So the result of system
B does not depend in any way on the result of
system A and vice versa. So for system A we have
|U4) = alu) + ag|d) and for system B we have
(W) = Byu|u)+Pa4|d). We also require noralziation
of each state. The combined state is then |¥) =
|U4) ® |¥Up). Expanding this we see that |¥) =



ayBulun) + o, Balud) + agByldu)y + agfaldd). |¥)
is called the product state.

Most states of a tensor product space are how-
ever not product states. These are called Entan-
gled States. The most general vector in a com-
posite space of our spin system is given by |¥) =
wuu’uu> + ?ﬂud\UCD + wdu‘du> + wdd|dd> Where wij
are the complex coefficients of the state. Here the
normalization condition is »7, ;[¢;|* = 1. Sud-
denly we have two more degrees of freedom when
not working with product states. This is called
Entanglement.

Some systems can be more entangled than oth-
ers. A maximally entangled state is both, a com-
plete description of the system, such that no more
can be known about it and at the same time,
nothing is known about the individual systems.
To see this, we have to ask ourselves, how the ob-
servables o; and 7; are represented in the tensor
product states. If we apply for example o, to sys-
tem A this should just ignore system B. Also to
apply them we technically need touse 0, = 0, ®1
and 7, = I ® 7, to make dimensions match.

From only one system we remember that (o, )+
(0,)? + (0.)> = 1 holds for one direction when
measuring spin. For a product state, the same
thing still holds. However, consider the state |¥) =
\/Li(|ud> +|du)). We can show that (o,) = (o)
(0,) = 0. The same thing of course goes for 7.
So despite us knowing exactly what the state is,
we have expectation value of 0 for all directions.
We clearly cannot say anything about whether
the spin is +1 or -1. This raises the question: Is
there more to know? The answer is no.

Suppose we have an observable A for system
A and B for system B. The correlation C(A, B)
is defined as C(A, B) = (AB) — (A)(B). If this
quantity is not equal to zero, the two states in
the systems must be entangled. Another test
comes from the density matrix. Using a state |U),
which is a product state of |V,4) and |[Up), we
know, the wave function is of the form v (a,b) =
Ya(a)pp(b). The density matrix is then equal to
Paa = Vala)a(a’) >, ¥p(b)p(b). If we note
that the state of system B is normalized, we can
see that the density matrix of system A reduces to
pa(d',a) = a(a)a(a’). Now only for a product
state, this density matrix has exactly one non-
zero eigenvalue, which is exactly one.

For the opposite case of a maximally entangled
state, if we have dimension N4, the density ma-
trix of system A is given by pa(d’,a) = NLAcSa/a.
Which tells us that all eigenvalues are equal to

L and like that nothing can be said about the

Na

state of system A.

11 Continuous Variables

If we, for example, consider the position of a par-
ticle along the z-axis, we no longer only have 2
possible states. In fact we have uncountable in-
finitely many. Luckily, a vector is just a function
so let’s see the implications of this.

Consider some real value  and some function
¥ (x). For operators, let’s start with a simple ex-
ample, the "multiply by &” operator. This oper-
ator is defined as K (x) = k¢ (z). We can also
define the "differentiate” operator as Di(x) =
dip(x)

- To show if some operator is Hermitian, we

can sandwich the operator between a ket and a
bra and need the relation (V|L|®) = (®|L|¥). In
the case of K we see that it is Hermitian, whilst
D is not. However since D is anti-Hermitian
(D' = —D) we can just multiply by i or —i to
get a Hermitian operator. Thus, —ihD is Hermi-
tian.

12 Heisenberg Uncertainty

To measure the position of a particle, we can
use a hermitian operator X of the form X|U) =
20| V). The wave function thus becomes z)(x) =
xoY(z). Now this is interesting because we get
(x — x0)Y(x) = 0. So either z = zy or ¢(z)
0 Now, no ordinary, continuous function can do
that. But there is the Dirac delta function... So
for every real number xzy there exists a corre-
sponding eigenvector, sometimes also called Eigen-
function.

The momentum operator P is defined as —ihD
where D is the differential operator from before.
Again, applied to the wave function we get Py (x) =

—ih%‘f). Reformulating this and solving a differ-

ential equation we find 1, (z) = Ae . The con-
stant A is found by normalization. In total we
find that ¢,(z) = =€ .

Now amazingly, we can notice, that the eigen-
functions of P have the term e’ in them. This is
very similar to wave equations. The wavelength
then is given by \ = 22

Now, if we look at uncertainty, we can see that
the commutor [X, P] = XP — PX is equal to ih.
This means that we cannot measure both position
and momentum at the same time. More percisely,

AXAP > 1.



